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Improved Lower Bounds for the Critical Probability
of Oriented Bond Percolation in Two Dimensions
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We present a coupled decreasing sequence of random walks on Z that dominate the edge
process of oriented bond percolation in two dimensions. Using the concept of random
walk in a strip, we describe an algorithm that generates an increasing sequence of lower
bounds that converges to the critical probability of oriented percolation pc . From the
7th term on, these lower bounds improve upon 0.6298, the best rigorous lower bound at
present, establishing 0.63328 as a rigorous lower bound for pc . Finally, a Monte Carlo
simulation technique is presented; the use thereof establishes 0.64450 as a non-rigorous
five-digit-precision (lower) estimate for pc .
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1. INTRODUCTION

Oriented percolation in two dimensions or discrete time contact process on Z is
a family of discrete time stochastic processes in state space {0, 1}Z, indexed by a
parameter p ∈ [0, 1], the infection probability. It is well known that this family
exhibits a phase transition, i.e. there exists a critical probability pc ∈ (0, 1) such
that the processes die out with probability 1 if p < pc, whereas the processes
survive with positive probability if p > pc. (See [1] or [2], for instance).

As usual in critical phenomena theory, an analytical expression for pc is
unknown, although numerical estimates abound in mathematical and physical
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literatures. At present, the best (rigorous) lower and upper bounds for pc are
0.6298 and 2/3 respectively(3).

In this paper we present an algorithm that generates an increasing sequence of
lower bounds that converges to the critical probability of oriented bond percolation
in two dimensions. From the 7th term on, these lower bounds improve upon 0.6298,
establishing 0.63328 as a rigorous lower bound for pc.

More specifically:

1. a sequence of lower bounds for pc, {p(i)
c }i∈N, is generated through the

following steps:

(i) we construct in a common probability space (�,F , P), i.e. we

couple, a family of random walks { p X
(i)
n }n∈N on Z, indexed by i ∈

N = N ∪ {∞} and p ∈ (0, 1], together with a family of irreducible

and aperiodic Markov chains { pY (i)
n }n∈N taking values in S (i) def=

{0, 1}{2,4,...,2i}, indexed by i ∈ N and p ∈ (0, 1), in such a way that
(a) (∀ω ∈ �) (∀i, j ∈ N) (∀p ∈ (0, 1]) (∀n ∈ N) i ≤ j ⇒

p X
(i)
n [ω] ≥ p X

( j)
n [ω]

(b) (∀ω ∈ �) (∀i ∈ N) (∀p1, p2 ∈ (0, 1]) (∀n ∈ N) p1 ≤
p2 ⇒ p1 X

(i)
n [ω] ≤ p2 X

(i)
n [ω]

(c) { p X
(∞)
n }n corresponds to the right edge process of oriented

percolation.4

(d) the law of ( p X
(i)
n+1 − p X

(i)
n ) on { pY (i)

n = σ } does not de-
pend on n (but it does depend on σ ). This means that the
Markov chain { pY (i)

n } determines the jump distribution of

the random walk { p X
(i)
n }.

(e) p X
(i)
n /n

n−→ M (i)(p)
def= ∑

σ∈S (i) E
P( p X

(i)
2 − p X

(i)
1 | pY (i)

1
= σ ) · π (σ ) a.s., provided that π is the invariant measure
of the Markov chain { pY (i)

n }. That is, the mean speed of

the random walk { p X
(i)
n } converges almost surely to its

mean jump on configuration σ weighted according to the
stationary measure of { pY (i)

n }.
(ii) p(i)

c is defined to be the (only) value of p that nullifies M (i)(p), i.e.

M (i)(p(i)
c ) = 0. In words, when p = p(i)

c , the random walk { p X
(i)
n }

has no drift in the long term.

4 As defined in [2, pag.52], [1, sec.4] or in Section 2.3 of this paper, for example.
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2. the sequence {p(i)
c }i∈N is shown to converge in non-decreasing fashion to

pc, i.e. p(i)
c ↗ pc.

3. the first ten lower bounds (p(0)
c , p(1)

c , ..., p(9)
c ) are explicitly calculated,

which improves on 0.6298 establishing 0.63328 as a rigorous lower bound
for pc.

The random walks alluded above and defined precisely in Section 2.3 correspond
to the concept of Random Walk in a (Half) Strip developed in [4]. In strict sense,
these processes are not proper random walks since their increments are neither
stationary nor independent.

In the last section, we present a Monte Carlo simulation technique that exhibits
a clear cut off between the subcritical and supercritical phases which enables a
precise estimation of the critical probability of oriented percolation without the aid
of scaling techniques. By means thereof, p(1000)

c was determined within a precision
of 5 digits, that is pc ≈ p(1000)

c = (0.64451 ± 0.00001).

2. DEFINITIONS AND CONSTRUCTIONS

Throughout this paper we adopt the following convention: N = {0, 1, 2, . . .}.

2.1. The Enviroment

G ≡ (V, E) will denote the oriented graph having V = {(n, m) ∈ N × Z :
(n + m) is even} as its set of vertices/sites and E = {el

nm, er
nm : (n, m) ∈ V} as its

set of bonds: bond el
nm points from site (n, m) to site (n + 1, m − 1), whereas bond

er
nm points from site (n, m) to site (n + 1, m + 1). Sometimes the correspondence

l ↔ −1 / r ↔ +1 will be assumed throughout the text . We interpret n as a
(discrete) time coordinate and m as a (discrete) space coordinate in G (see Fig. 1).

Vn denotes the nth slice of V , i.e. Vn = {(i, j) ∈ V : i = n}, and Zn the set
of integers m such that (m + n) is even.

It will be useful in the forthcoming definitions to identifyVn as Zn and to think
of {0, 1}Vn as {0, 1}Zn . Bearing in mind this identification and denoting a generic
(spin) configuration in {0, 1}Vn by η, we shall write η(m) (instead of η(n, m)) to
denote the spin of site (n, m) in configuration η.

2.2. The Probability Structure

Let {ξ j
nm : (n, m) ∈ V, j ∈ {l, r}} be a family of independent and uniformly

distributed (onto [0, 1]) random variables defined on the same abstract probability
space (�,F , P). Starting from this three-index family, we define the four-index
family of iid Bernoulli random variables {pξ

j
nm : (n, m) ∈ V, j ∈ {l, r}, p ∈
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Fig. 1. Graph G, whereon the processes will be defined (Sec. 2.3).

(0, 1]} by

pξ
j

nm = 1{ξ j
nm≤p} (1)

It follows straightforwardly from (1) that

{
P
(

pξ
j

nm = 1
) = p (a)

P
(

pξ
j

nm = 0
) = 1 − p = q (b)

(2)

and the Fundamental Coupling Inequality:

(∀ω ∈ �) (∀(n, m) ∈ V) (∀ j ∈ {l, r}) (p1 ≤ p2) ⇒ p1ξ
j

nm(ω) ≤ p2ξ
j

nm(ω)

(3)

pξ
l
nm = 1 is interpreted as an open channel from site (n, m) to site (n + 1, m − 1);

pξ
r
nm = 0 as an obstructed channel from site (n, m) to site (n + 1, m + 1); and so

forth . . .
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2.3. The Processes

2.3.1. The Strengthened Discrete Time Contact Processes (SDTCP)

In what follows, η ∈ {0, 1}Vn will be interpreted as an infection state on slice
Vn according to the rule:{

η(m) = 1: site m is infected at time n
η(m) = 0: site m is healthy at time n

(4)

Now, for each i ∈ N, p ∈ (0, 1] and η ∈ {0, 1}V0 , we define the Strengthened
Discrete Time Contact Process of i th-order, infection probability p and initial
infection state5 η, { η

p X (i)
n }n∈N by

Definition 2.1

(a) η
p X (i)

0 = η, i.e. (∀m ∈ Z0) η
p X (i)

0 (m) = η(m)

(b) η
p X (i)

n+1(m) = sup{ η
p X (i)

n (m − 1) · pξ
r
n,m−1; η

p X (i)
n (m + 1) · pξ

l
n,m+1;

1{ηp X
(i)
n+1−m>2i}} (∀m ∈ Zn+1)

where η
p X

(i)
n+1 = sup m∈Zn

j∈{−1,+1}
{(m + j) : η

p X (i)
n (m) · ξ

j
nm = 1}

Remarks:

(i) The role of the indicator function in Definition 2.1(b) is to infect by force

all the sites lying farther than 2i unit lengths on the left side of η
p X

(i)
n+1, the

greatest infected site at time n + 1. Hence the name Strengthened Discrete
Time Contact Process (SDTCP).

(ii) (∀n ∈ N) η
p X (i)

n is a {0, 1}Vn -valued random variable.
(iii) The standard initial state to be assumed throughout this text is η = 1•≤0 ∈

{0, 1}V0 defined by 1•≤0(m) = 1{m≤0}. That is, unless otherwise stated, at
time n = 0, all non-positive even sites will be assumed infected, whereas
all positive even sites will be assumed healthy. In this case, we shall omit
the initial condition. Therefore the symbols { p X (i)

n }n∈N, { 1•≤0
p X (i)

n }n∈N,

{ p X (i)
n }, p X (i)

• share the same meaning and, for simplicity’s sake, the last
two ones will be prefered, provided that no confusion arises.

It follows directly from Definition 2.1 that

1. in the case of i = ∞, the indicator function never acts and we recover the
ordinary discrete time contact process, also called oriented percolation

5 Throughout this text we shall only consider initial configurations η ∈ {0, 1}V0 such that η(0) =
1, η(m) = 0, ∀m > 0 and η(m) = 1, ∀m < −2i .
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in two dimensions, as described in [1, Sec. 2]. Throughout this paper, we
shall refer to it as { p X (∞)

n };
2. the family { η

p X (i)
n } is decreasing in i in the following sense:

(∀ω ∈ �) (∀(n, m) ∈ V)
(
∀i, j ∈ N

)
(∀p ∈ (0, 1])

(∀η ∈ {0, 1}V0
)

i ≤ j ⇒ η
p X (i)

n (m)[ω] ≥ η
p X ( j)

n (m)[ω] (5)

In particular, the oriented percolation process (i = ∞) is the weakest of
all.

3. the family { η
p X (i)

n } is increasing in p in the following sense:

(∀ω ∈ �) (∀(n, m) ∈ V)
(
∀i ∈ N

)
(∀r, s ∈ (0, 1])

(∀η ∈ {0, 1}V0
)

r ≤ s ⇒ η
r X (i)

n (m)[ω] ≤ η
s X (i)

n (m)[ω] (6)

4. the family { η
p X (i)

n } is increasing in η in the following sense:

(∀ω ∈ �) (∀(n, m) ∈ V)
(
∀i ∈ N

)
(∀p ∈ (0, 1])

(∀η, θ ∈ {0, 1}V0
)

η � θ ⇒ η
p X (i)

n (m)[ω] ≤ θ
p X (i)

n (m)[ω] (7)

where η � θ means that η(m) ≤ θ (m) for all m ∈ Z0.

2.3.2. The Right Edge Processes (REP)

The second line of Definition 2.1(b) above defines the right edge process, a

(non-markovian) random process on Z denoted by { p X
(i)
n } ( or p X

(i)
• in abbreviated

fashion). In words, p X
(i)
n corresponds to the last infected site at time n. Accord-

ingly, in Fig. 2 p X
(2)
0 = 0, p X

(2)
1 = −3, p X

(2)
2 = −2, p X

(2)
3 = −3, p X

(2)
4 = −2,

. . .
Again, in the case of i = ∞, the edge process of oriented percolation p X

(∞)
•

described in(1,2) is recovered.
It is useful to think of p X

(i)
• as random walks6 on Z.

2.3.3. The Induced Markov Chains

As a SDTCP p X (i)
• (i < ∞) evolves, an observer (sitting) at the right edge

p X
(i)
• would notice a random evolution in the spins of the first i nearest neighboring

sites to the left of him/her. This random process turns out to be a finite Markov

6 Note, however, that the increments of p X
(i)
• are neither stationary nor independent.
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Fig. 2. A realization ω of the p X (2)
• process . Full-black arrows are open, whereas dotted arrows are

closed to infection propagation. Black sites are infected, white sites are healthy and gridded sites were
infected by force.

chain taking values in the space of the corresponding 2i spin configurations. The
next definition expresses this idea in mathematical terms:

Definition 2.2 The Markov chain { pY (i)
n }n∈N, i ∈ N, with state space S (i) =

{0, 1}{2,4,...,2i} defined by

pY (i)
n (2 j) = p X (i)

n

(
p X

(i)
n − 2 j

)
, 1 ≤ j ≤ i

is called Induced Markov Chain (IMC) associated to the SDTCP p X (i)
• .

In what follows, a generic element σ ∈ S (i) will be labeled by l ∈ {0, 1, . . . , 2i −
1} according to the rule

σ ↔ σ
(i)
l ⇔ l =

i∑
j=1

2i− jσ (2 j) (8)

For simplicity’s sake, we shall omit the superscript (i), whenever no ambiguity
arises. Accordingly, in Fig. 2 pY (2)

0 = σ3, pY (2)
1 = σ2, pY (2)

2 = σ3, pY (2)
3 =

σ3, pY (2)
4 = σ1, . . .

The transition probabilities of pY (i)
•

q (i)
lm (p)

def= P

[
pY (i)

n+1 = σm | pY (i)
n = σl

]
, 0 ≤ l, m ≤ 2i − 1 (9)
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turn out to be strictly positive polynomial functions of p, provided that 0 < p < 1.7

That is, pY (i)
• is an irreducible and aperiodic finite Markov chain. Hence π (i)(p),

its stationary distribution on S (i), is well defined.
The notation

π
(i)
l (p)

def= π (i)(p)[σl], l = 0, 1, . . . , 2i − 1

is self-explanatory.
At this point, in accordance with [4, Sec.3.1], we state

Definition 2.3

P (i)
(l,m,k)(p)

def= P
[

p X
(i)
n+1 = p X

(i)
n + (1 − 2k), pY (i)

n+1 = σm | pY (i)
n = σl

]
,

k ∈ N, 0 ≤ l, m ≤ 2i − 1

the transition probabilities from state σl to state σm with a jump of magnitude
(1 − 2k).

Remarks:

(i) each P (i)
(l,m,k) is a polynomial function of q.8 In fact, it is readily seen

by means of elementary combinatorics that each P (i)
(l,m,k) is a product

of non-negative, integer powers of the local transition probabilities q2,
(1 − q2), q, (1 − q), 1, 0 (see the table at the top of Fig. 3). More pre-
cisely, P (i)

(l,m,k)(q) = (q2)n1 · (1 − q2)n2 · qn3 · (1 − q)n4 · 1n5 · 0n6 , where
each n j , 1 ≤ j ≤ 6 is a non-negative, integer function of (i, l, m, k) and
00 is interpreted as 1.

(ii) P (i)
(l,m,k)/P (i)

(l,m,k+1) = 1/q2 for k ≥ i + 2. To see this, observe that a tran-
sition of type (l, m, k + 1) corresponds to a transition of type (l, m, k)
shifted two unit lengths to the left. (Figure 3 ilustrates the case: i = 2,

l = 0, m = 2, k = 4). Assuming p X
(i)
n = 0 for simplicity’s sake, this

means that the right edge must move backwards from m = (1 − 2k) to
m = (1 − 2k − 2) at time n + 1. To accomplish this task, sites (n, 2 − 2k)
and (n,−2k), which were infected/black9 at time n, must not infect site
(n + 1, 1 − 2k) (the former right edge’s position when exposed to a transi-
tion of type (l, m, k)) through the edges er

n,−2k and el
n,−2k+2 anymore. Since

this event occurs with probability q2 and all the remaining combinatorics
remains unchanged, the desired result is established.

7 See the remarks after Definition 2.3 for a detailed account thereof.
8 The use of q = 1 − p instead of p is due to algebraic simplicity.
9 Remember that all sites at a distance larger than 2i to the left of the right edge are infected by force.
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Fig. 3. Top: table of local transition probabilities. Upper half: a transition of type (0, 2, 4): σ0 → σ2,

p X
(2)
n+1 − p X

(2)
n = 1 − 2 · 4 = −7. Lower half: a transition of type (0, 2, 5): σ0 → σ2, p X

(2)
n+1 −

p X
(2)
n = 1 − 2 · 5 = −9.

(iii) Each transition probability q (i)
lm , 0 ≤ l, m ≤ 2i − 1 may be expressed as

q (i)
lm = ∑∞

k=0 P (i)
(l,m,k). Hence one may conclude from (i) and (ii) above

that each q (i)
lm is a strictly positive polynomial10 function of q ∈ (0, 1).

10 The polynomial character of q(i)
lm stems from the fact that each P (i)

(l,m,k) has at least one factor equal

to (1 − q2), provided that k ≥ (i + 2).
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Moreover, the 2i entries of (π (i)
l ) turn out to be strictly positive rational

functions of q ∈ (0, 1).

Definition 2.4

M (i)
l (p)

def=
∞∑

k=0

2i −1∑
m=0

(1 − 2k) · P (i)
(l,m,k)(p), 0 ≤ l ≤ 2i − 1

the mean jump/drift of the REP { p X
(i)
n } on configuration σl , i.e. E

P( p X
(i)
n+1 −

p X
(i)
n | pY (i)

n = σl )
and

Definition 2.4

M (i)(p)
def=

2i −1∑
l=0

M (i)
l (p) · π

(i)
l (p) =

2i −1∑
l=0

E
P

(
p X

(i)
n+1 − p X

(i)
n

∣∣∣ pY (i)
n = σl

)
· π

(i)
l (p)

the asymptotic mean jump/drift of the REP { p X
(i)
n }.

M (i)(p) will also be called the (asymptotic right) edge speed in accordance
with Section 2.4 below. As it will soon become clear, Definition 2.5 is of funda-
mental importance in this paper.

Under this framework, the SDTCPs p X (i)
• , i < ∞ can be regarded as Markov

Chains in a 2i -row Strip:

p X (i)
n = (

p X
(i)
n , pY (i)

n

)
(10)

a slightly different idea of Markov Chains in a Half Strip described in [4, Sec.3.1].

Remark: keeping remarks (i), (ii) and (iii) above in mind, it is not difficult to see
that M (i)

l , 0 ≤ l ≤ 2i − 1 and M (i) are rational functions of q ∈ (0, 1) and hence
of p ∈ (0, 1).

2.4. Critical Probabilities

In Section 3 below it will be shown that, for i ∈ N and p ∈ (0, 1]:

(i) M (i)(p) is a scrictly incresing function of p;
(ii) M (i)(p) has only one real root in (0, 1];

(iii) p X
(i)
n

n

(n)−→ M (i)(p) a.s.
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In the case of i = ∞, α(p), the (right) edge speed of oriented percolation,
plays precisely the same role of M (i)(p) in the case of finite i depicted above11 .
(For details, see [1] for instance). Therefore the notation

M (∞)(p)
def= α(p)

suggests itself and we state

Definition 2.6 The critical probability p(i)
c for the family of stochastic processes{

p X (i)
•

}
p∈(0,1]

is the only real root of the edge speed M (i)(p) in (0, 1]. Hence

M (i)
(

p(i)
c

) = 0, ∀i ∈ N

Naturally p(∞)
c corresponds to the critical probability of oriented percolation

pc alluded in Section 1
The heuristic meaning of Definition 2.6 is as follows:

(i) p < p(i)
c ⇒ limn→∞ p X

(i)
n = −∞ a.s., i.e. the infection disappears

with probability one;

(ii) p > p(i)
c ⇒ limn→∞ p X

(i)
n = +∞ a.s., i.e. the infection spreads out over

all Z.

In the sequel, we prove an important relation concerning the critical probabilities
just defined, viz. p(i)

c ↗ p(∞)
c as i → ∞.

This non-decreasing convergence to the critical probability of oriented per-
colation (to be called The Convergence Theorem) besides the possibility of cal-
culating the finite (i ∈ N) critical probabilities by algebraical means (Section 4
below) are the cornerstone of this work.

3. THE CONVERGENCE THEOREM AND PRELIMINARY RESULTS

Lemma 3.1

(∀i ∈ N)(∀p ∈ (0, 1]) lim
n→∞

p X
(i)
n

n
= M (i)(p) a.s.

Proof:

First case (i ∈ N): Let n(i)
l be the (random) number of visits that the IMC pY (i)

•
makes to state σl up to time n (so that

∑2i −1
l=0 n(i)

l = n) and J (i)
l,k the kth

11 α(p) = −∞, whenever p < pc; thus the strictly increasing behaviour of M (i)(p) in the case of finite
i does not apply to α(p) precisely.
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jump of the REP p X
(i)
• on state/row σl . The (strong) Markov property of

SDTCP p X (i)
• makes J (i)

l,k , : k ∈ {1, 2, 3, . . .} iid random variables with

E[J (i)
l,k ] = M (i)

l . Now,

p X
(i)
n

n
=

2i −1∑
l=0

n(i)
l∑

k=1

J (i)
l,k

n
=

2i −1∑
l=0

n(i)
l∑

k=1

J (i)
l,k

n(i)
l

· n(i)
l

n
=

2i −1∑
l=0

n(i)
l

n
·

n(i)
l∑

k=1

J (i)
l,k

n(i)
l

, (11)

lim
n→∞

n(i)
l

n
= π

(i)
l a.s. and lim

n→∞

n(i)
l∑

k=1

J (i)
l,k

n(i)
l

= M (i)
l (p) a.s.

Taking limits (n → ∞) on both extremities of (11) and bearing in mind
Definition 2.5, the desired result is established.

Second case (i = ∞): See [1, pag.1004]. �

Lemma 3.2 For all finite i , the mean drift functions M (i)(p) : (0, 1] →
(−∞, 1] are strictly increasing in p, i.e. (∀i ∈ N)(∀p1, p2 ∈ (0, 1]) p1 < p2 ⇒
M (i)(p1) < M (i)(p2). Moreover, M (i) is a surjection from (0, 1] into (−∞, 1].

Proof: The non-decreasing behaviour of M (i)(p) follows from inequality (6) above
and lemma 3.1 just established. Definitions 2.2, 2.3, 2.4, 2.5 and the corresponding
remarks make M (i)(p) a rational function of p such that M (i)(0+) = −∞ and
M (i)(1) = 1; thus M (i)(p) can not be constant on any interval [p1, p2] ⊂ (0, 1]
and the strict behaviour follows.12 �

Commentary on Lemma 3.2: It is worth observing that the function α(p)
def=

M (∞)(p) is non-decreasing, strictly positive on (pc, 1), null at p = pc and infinitely
negative on (0, pc). Again, the reference is.(1)

Lemma 3.2 above yields

Corollary 3.3 For each i ∈ N, M (i) has only one real root in (0,1], denoted by
p(i)

c , in accordance with Section 2.4

12 To see why M (i)(0+) = −∞, observe that p X
(i)
1 ↘ −∞ a.s. as p ↘ 0; apply the Monotone

Convergence Theorem to conclude that E( p X
(i)
1 ) ↘ −∞ as p ↘ 0; keep in mind inequality (7) and

the Markov property of p X (i)
• to yield M (i)

l (p)
def= E( p X

(i)
n+1 − p X

(i)
n |Y (i)

n = σl ) ↘ −∞ as p ↘ 0

and finally establish that M (i)(p)
def= ∑2i −1

l=0 M (i)
l (p)π (i)

l (p) ↘ −∞ as p ↘ 0.
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Lemma 3.4 The sequence {M (i)(p)}i∈N
is non-increasing, that is (∀i, j ∈

N) (∀p ∈ (0, 1]) i ≤ j ⇒ M (i)(p) ≥ M ( j)(p). In particular (∀i ∈ N) (∀p ∈
(0, 1]) α(p) = M (∞)(p) ≤ M (i)(p).

Proof: The non-increasing behaviour of
{

M (i)(p)
}

i∈N
follows from inequality

(5) above and again from Lemma 3.1. �
Lemma 3.4 yields

Corollary 3.5 The numerical sequence {p(i)
c }i∈N is non-decreasing. Moreover,

for all finite i , pc = p(∞)
c ≥ p(i)

c . Hence pc ≥ limi→∞ p(i)
c .

At this point, we turn our attention to the reverse (and more difficult) inequality
pc ≤ limi→∞ p(i)

c . For that purpose, we suppose our abstract probability space
(�,F , P) is large enough to support an additional family of random variables
{ςp,i : p ∈ (0, 1], i ∈ N} independent of the family {ξ j

nm : j ∈ {l, r}, (n, m) ∈ V}
(subsection 2.2) and such that each ςp,i is marginally distributed inS (i) = {σl, 0 ≤
l ≤ 2i − 1}, the space of local spin configurations defined in Section 2.3.3, ac-
cording to π (i)(p).13

Now, to each ςp,i we associate the random variable ς̂p,i taking values in
{0, 1}V0 and defined by

ς̂p,i (2m)
def=


0, m > 0
ςp,i (−2m), −i ≤ m ≤ −1
1, m < −i

By analogy, we make the association S (i) � σ ↔ σ̂ ∈ {0, 1}V0 .
Keeping in mind the foregoing paragraphs, for each finite i and p ∈ (0, 1],

we define the following stochastic processes on (�,F , P) by analogy with sub-
section 2.3:

(a) π
p X (i)

•
def= ς̂p,i

p X (i)
• (b) π

p Y (i)
•

def= ς̂p,i
p Y (i)

• (c) π
p X

(i)
•

def= ς̂p,i
p X

(i)
• (12)

To put it differently, (12) means that π
p X (i)

• = σ̂l
p X (i)

• on {ςp,i = σl}; that is, π
p X (i)

•
chooses a random local spin configuration ςp,i in S (i) according to the law π (i)(p),
adopts ς̂p,i ∈ {0, 1}V0 as its initial configuration and then evolves according to the
dynamics prescribed in Definition 2.1

Since π
p Y (i)

• starts from its stationary distribution π (i)(p), it is a stationary

Markov chain, i.e. (∀n ∈ N)(∀l ∈ {0, 1, . . . , 2i − 1}) P({ π
p Y (i)

n = σl}) = π
(i)
l (p).

13 In fact, (�,F , P) need only support an additional independent uniform random variable ξ , since
then we can define each ςp,i as an appropriate simple deterministic function of ξ .
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Hence we may conclude that π
p X

(i)
• has stationary increments such that (∀n ∈

N) E( π
p X

(i)
n+1 − π

p X
(i)
n ) = M (i)(p).

At this point, we are able to prove

Lemma 3.6 (∀n, i ∈ N) (∀p ∈ (0, 1]) E( p X
(i)
n ) ≥ n · M (i)(p).

Proof: According to inequality (7) and (12) above

(∀ω ∈ �)(∀n, i ∈ N)(∀p ∈ (0, 1]) π
p X

(i)
n [ω]

def= ς̂p,i
p X

(i)
n [ω] ≤ p X

(i)
n [ω] (13)

Integrating both sides of (13) and keeping in mind the stationarity of the increments

of π
p X

(i)
• yields the desired result:

E

(
p X

(i)
n

)
≥ E

(
π
p X

(i)
n

) = n · M (i)(p)

�
Lemma 3.7 (∀n ∈ N)(∀p ∈ (0, 1]) limi→∞ E( p X

(i)
n ) = E( p X

(∞)
n )

Proof: According to Definition 2.1, for all i ∈ N and p ∈ (0, 1], the correspond-

ing right edge process p X
(i)
• can move at most one site to the right at each single

time interval, that is n ≥ p X
(0)
n ≥ p X

(1)
n ≥ . . . ≥ p X

(∞)
n . Since infections by force

with regard to the SDTCP p X (i)
• can only occur at a (even) distance (strictly) greater

than 2i unit-lengths to the left of the right edge position p X
(i)
n , we can conclude

that no infection by force can occur in the region Ri
def= {(n, m) ∈ V : m ≥ n − 2i}

as regards p X (i)
• . (See the case i = 4 in Fig. 4). Hence we can see (by means of

finite induction on n) that p X (i)
• and p X (∞)

• are indistinguishable over Ri , that is

(∀i ∈ N) (∀p ∈ (0, 1]) (∀(n, m) ∈ V) (n, m) ∈ Ri ⇒ p X (i)
n (m) = p X (∞)

n (m)
(14)

An imediate consequence of (14) is

(∀n ∈ N)
{

p X
(∞)
n �= p X

(i)
n

} = {
p X

(∞)
n < p X

(i)
n

} ⊂ {
p X

(∞)
n < n − 2i

}
=

⋂
m∈Zn ,

m≥n−2i

{
p X (∞)

n (m) = 0
}

(15)

where the last event in (15) amounts to saying that oriented percolation does not
infect slice Vn to the right of site (n, n − 2i), that is, all sites in Vn ∩ Ri must
be healthy/white (an illustration thereof, where n = 5 and i = 4, can be seen in
Fig. 4).
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i=4

2i=8

Fig. 4. No infection by force can occur in the region inside the dashed parallelogram. The processes

p X (4)
• and p X (∞)

• are indistinguishable therein.

Now, observe that, if oriented percolation is not present in the regionVn ∩ Ri ,
all paths joining the sites therein to the non-positive side of slice V0, i.e. {(0, 2m) ∈
V0 : m ≤ 0}, must be obstructed somewhere. In particular, all (i + 1) straight lines
joining site (0,−2 j) to site (n, n − 2 j), 0 ≤ j ≤ i must be interrupted at some
point (Fig.4). Since these lines are made of different, independent bonds, the
probability of this last event equals (1 − pn)i+1. Thus

P
({

p X
(i)
n �= p X

(∞)
n

}) ≤ P

 ⋂
m∈Zn ,

m≥n−2i

{
p X (∞)

n (m) = 0
} ≤ (1 − pn)i+1 (16)

That is, p X
(i)
n

i−→ p X
(∞)
n in probability. Hence there is a subsequence ( p X

(ik )
n )k∈N

such that p X
(ik )
n

k−→ p X
(∞)
n almost surely [5, Theorem 7.6]. Since the whole

sequence ( p X
(i)
n )i∈N is non increasing thanks to inequality (5), we must have

p X
(i)
n

i
↘ p X

(∞)
n almost surely as well, which amounts to the almost sure conver-

gence 0 ≤ (n − p X
(i)
n )

i
↗ (n − p X

(∞)
n ). On the other hand, thanks to the second

inequality in (16), E(n − p X
(∞)
n ) < ∞. Therefore we can apply the dominated
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convergence theorem to conclude that E(n − p X
(i)
n )

i
↗ E(n − p X

(∞)
n ) and thence

E( p X
(i)
n )

i
↘ E( p X

(∞)
n ). �

Now we can prove the main result of this paper:

Theorem 3.8 (The Convergence Theorem) p(i)
c

i
↗ pc.

Proof: Suppose limi→∞ p(i)
c < pc and pick p ∈ (limi→∞ p(i)

c , pc). Then

Lemma 3.2 and Corollary 3.5 yield (∀i ∈ N) M (i)(p) > M (i)(p(i)
c )

def= 0. More-

over Lemma 3.6 implies (∀i, n ∈ N) E( p X
(i)
n ) ≥ n · M (i)(p) ≥ 0. Thus Lemma 3.7

yields

(∀n ∈ N) E
(

p X
(∞)
n

) = lim
i→∞

E
(

p X
(i)
n

) ≥ 0 (17)

On the other side,

p < pc =⇒ p X
(∞)
n

n

(n)−→ −∞ a.s. (Lemma 3.1 and commentary on Lemma 3.2)

=⇒ E

(
p X

∞
n

n

)
(n)−→ −∞ (Fatou’s Lemma applied to

(
1 − p X

∞
n

n

)
n≥1

)

=⇒ ∃n ∈ N : E
(

p X
∞
n

)
< 0

which contradicts (17). Hence, limi→∞ p(i)
c ≥ pc and the theorem follows from

Corollary 3.5 above. �

4. NUMERICAL CALCULATIONS

4.1. Algebraical Determination of the Critical Probabilities

Theorem 3.8 is of theoretical interest by itself. However Corollary 3.5, a
weaker result, is enough to show that each p(i)

c (i ∈ N) is an improved lower bound
with regard to its predecessors for the critical probability of oriented percolation.

In the sequel, we present the algorithm which determines the critical prob-
abilities p(i)

c explicitly (in the case of finite i), although it was already implicit in
Sections 2.3.3 and 2.4.

According to Definitions 2.2, 2.3, 2.4, 2.5 and 2.6, each critical probability
p(i)

c , i ∈ N may be determined through the following steps:14

14 We refer the reader to the remarks after Definitions 2.3 and 2.5 for details concerning the rational
character of the functions below.
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(i) Determination of the Transition Probabilities P (i)
(l,m,k )(q)

elementary combinatorics show that the probabilities P (i)
(l,m,k)(q), 0 ≤

l, m ≤ 2i − 1, k ∈ N may be expressed as polynomial functions of q:

P (i)
(l,m,k)(q) : polynomial of q (18)

(ii) Determination of the Transition Matrix (q (i)
lm )0≤l,m≤2i −1

the transition probabilities defined in (9) may be expressed as

q (i)
lm (q) =

∞∑
k=0

P (i)
(l,m,k)(q) (19)

Since the numerical sequence (P (i)
(l,m,k)(q))k∈N is a geometric progression

(of ratio q2) except for the first (i + 2) terms, the transition probabillities
q (i)

lm (q) are rational functions of q. As a matter of fact, these probabilities
turn out to be polynomials of q:

q (i)
lm (q) : polynomial of q

(iii) Determination of the Stationary Measure (π (i)
l )0≤l≤2i −1

the combinatorial calculations leading to (18) show that the transition
probabilities q (i)

lm (q), 0 ≤ l, m ≤ 2i − 1 are strictly positive, provided that

q ∈ (0, 1). Thus the transition matrix (q (i)
lm )0≤l,m≤2i −1 is irreducible and

aperiodic and its stationary probability measure π (i) inS (i) can be uniquely
determined from (q (i)

lm ) by algebraical means. Therefore

π
(i)
l (q) is a strictly positive rational function of q ∈ (0, 1), 0 ≤ l ≤ 2i − 1

(iv) Determination of M (i)
l , the Mean Jump on State σl

Definition 2.4 and the fact that the numerical sequence (P (i)
(l,m,k)(q))k∈N is

eventually a geometric progression yield that

M (i)
l (q) is a rational function of q, 0 ≤ l ≤ 2i − 1

(v) Determination of M (i), the Mean Jump/Drift of pX (i)
•

Definition 2.5 and steps (iii) and (iv) above ensure that

M (i)(q) is a rational function of q

(vi) Determination of the Critical Probabilities (p(i)
c )i∈N

according to Corollary 3.3 and Definition 2.6, p(i)
c is the only real root of

M (i)(p) in (0, 1), hence it must be the only real root of the polynomial in
the numerator of M (i)(p). Thus, once M (i)(p) is determined algebraically,
p(i)

c may be determined numerically.
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In the sequel, we employ the algorithm described above to determine the first
critical probabilities:

4.1.1. The Critical Probability of Zeroth Order , p(0)
c :

In this case
∣∣S (i)

∣∣ = 1, so pY (i)
• is trivial:

M (0)(q) = M (0)
0 (q) =

∞∑
k=0

(1 − 2k).P (0)
0,0,k(q) = 1.p − 1.q(1 − q2)

− 3.q3(1 − q2) − 5.q5(1 − q2) − . . .

= (1 − q) − q(1 − q2).
[
1 + 3q2 + 5q4 + 7q6 + . . .

]
= (1 − q) − q(1 − q2)

1 + q2

(1 − q2)2

= (1 − q) − q + q3

1 − q2
= 1 − 2q − q2

1 − q2

Hence

M (0)(q) = 0 ⇔ 1 − 2q − q2 = 0 ⇒ p(0)
c = 2 −

√
2 = 0.58579 . . .

4.1.2. The Critical Probability of First Order, p(1)
c :

(q (1)
lm )(q) =

[
q − q3 + q4 1 − q + q3 − q4

q2 1 − q2

]
,

π
(1)
l (q) =

(
q2, 1 − q + q3 − q4

)
1 − q + q2 + q3 − q4

M (1)
0 (q) = 1 − 2q − 3q2 + 2q4

1 − q2
, M (1)

1 (q) = 1 − 2q − q2

1 − q2
,

M (1)(q) = 1 − 3q + 2q2 − 6q4 + q5 + 3q6

1 − q + 2q3 − 2q4 − q5 + q6

Hence

M (1)(q) = 0 ⇒ p(1)
c = 0.604233 . . .
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4.1.3. The Critical Probability of Second Order, p(2)
c :

(
q (2)

lm (q)
)

=


q − q3 + q6 q − 2q2 + q3 + q4 − q6 1 − 2q + q2 + q4 − q6 q2 − 2q4 + q6

q2 − q3 + q4 − q5 + q6 q − q2 + q5 − q6 q − 2q2 + 2q3 − q4 + q5 − q6 1 − 2q + 2q2 − q3 − q5 + q6

2q3 − q4 − q5 + q6 − q7 + q8 2q2 − 3q3 + q4 + q7 − q8 q − 2q3 + 2q5 − q6 + q7 − q8 1 − q − 2q2 + 3q3 − q5 − q7 − q8

q4 q2 − q4 q2 − q4 1 − 2q2 + q4



π
(2)
0 (q) = −2q4 + 2q5 − 4q6 + 9q7 − 14q8 + 15q9 − 9q10 + 2q11

−1 + 3q − 6q2 + 8q3 − 17q4 + 30q5 − 44q6 + 46q7 − 20q8 − 17q9 + 38q10 − 32q11 + 13q12 − 2q13

π
(2)
1 (q) = −q2 + 2q3 − 2q4 + q5 − 4q6 + 9q7 − 5q8 − 6q9 + 12q10 − 8q11 + 2q12

−1 + 3q − 6q2 + 8q3 − 17q4 + 30q5 − 44q6 + 46q7 − 20q8 − 17q9 + 38q10 − 32q11 + 13q12 − 2q13

π
(2)
2 (q) = −q2 + q3 + 2q5 − 9q6 + 15q7 − 14q8 + 8q9 − 2q10

−1 + 3q − 6q2 + 8q3 − 17q4 + 30q5 − 44q6 + 46q7 − 20q8 − 17q9 + 38q10 − 32q11 + 13q12 − 2q13

π
(2)
3 (q) = −1 + 3q − 4q2 + 5q3 − 13q4 + 25q5 − 27q6 + 13q7 + 13q8 − 34q9 + 37q10 − 26q11 + 11q12 − 2q13

−1 + 3q − 6q2 + 8q3 − 17q4 + 30q5 − 44q6 + 46q7 − 20q8 − 17q9 + 38q10 − 32q11 + 13q12 − 2q13

M (2)
l = 1

1 − q2

(
1 − 2q − 5q2 + 4q4, 1 − 2q − 3q2 + 2q4, 1 − 2q − q2 − 2q4 + 2q6, 1 − 2q − q2

)

M (2)(q)

= −1 + 5q − 11q2 + 16q3 − 25q4 + 52q5 − 75q6 + 96q7 − 58q8 − 69q9 + 152q10 − 111q11 − 5q12 + 74q13 − 49q14 + 10q15(
1 − q2

) (−1 + 3q − 6q2 + 8q3 − 17q4 + 30q5 − 44q6 + 46q7 − 28q8 − 17q9 + 38q10 − 32q11 + 13q12 − 2q13
)

Hence

M (2)(q) = 0 ⇒ p(2)
c = 0.614187 . . .

4.2. Numerical Determination of the Critical Probabilities:

The combinatorial calculations leading to the transition matrix (q (i))lm and
to the mean-drift vector M (i)

l described in Section 4.1 above, yet fastidious for
humans, are taylor-made for computers: while it took us a whole afternoom for
calculating (q (2))lm algebraically (16 polynomial entries), a FORTRAN 77 program
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running at 600 MHz, calculated (q (9))lm (49 polinomial entries) in less than one
minute.

The biggest problem in writing a computer program version for the algorithm
described in Section 4.1 arises precisely in step (iii), viz. the determination of the
stationary measure (π (i)

l )(q) in algebraical terms starting from the transition matrix

(q (i)
lm )(q). True, it could be done straightforwardly, acting on the polynomials

as if they were numbers. However, if we don’t take into account the fortuitous
simplifications that may occur, the degree of the resulting polynomials soon get
unmanageable and finding out these simplifications is far from obvious.

Therefore we have adopted a different approach:

(i) Initially the program determined the transition matrix (q (i)
lm ) algebraically

in terms of 2i × 2i polynomial entries of the non-infection probability q.
Moreover, it also determined the mean jump vector (M (i)

l ) algebraically in
terms of 2i rational functions of q. In other words, we taught the program
how to perform steps (i), (ii) and (iv) in Section 4.1 above, exactly as we
did for small values of i .

(ii) Next, it generated numerical transition matrices and numerical mean jump
vectors associated to a decreasing sequence of numerical values for q.

(iii) From each numerical transition matrix, a numerical stationary measure
was obtained solving a system of linear equations.15

(iv) The numerical mean-drift was then obtained performing the inner-product
of Definition 2.5.

(v) According to Definition 2.6 q (i)
c

def= 1 − p(i)
c lies between the last value of

q for which M (i)(q) is negative and the first value of q for which M (i)(q)
is positive.

This approach has the drawback of introducing numerical rounding errors (basi-
cally in step (iii) above), a difficulty we had not experienced hitherto. Therefore
in order to produce reliable numerical data, rigorous upper bounds for rounding
errors should be provided. We did so following the technique of foward analysis
described in [6]. Basically it consists in determining upper bounds for rounding
errors at each single arithmetic operation performed in the flow of numerical cal-
culations leading to the final result. This rather crude approach has the advantage
of providing reliable upper bounds for rounding errors, regardless of the particular
features the linear system may present.

As a simple example of forward analysis in action, suppose we knew that
the actual numerical value of x were given by the expression: x = (1.2 ± 0.1) ·

15 At this stage, partial pivoting, as described in (6), was of fundamental importance in keeping
numerical rouding errors under controll.
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Table II. Critical probabilities obtained

by means of simulation.

i p(i)
c

5 0.627
6 0.629
9 0.6332

20 0.638
40 0.641

100 0.643
200 0.6438

1000 0.64451

(1.2 ± 0.1). Working with a hypothetical two-digit computer, the basic procedure
would be as follows:

• calculate the least (xl), the greatest (xg) and the average (xa) numerical
possibilities for x :

xl = 1.1 · 1.1 = 1.21 → 1.2 xa = 1.2 · 1.2 = 1.44 → 1.4

xg = 1.3 · 1.3 = 1.69 → 1.7

• determine the upper bound for the correponding rounding error 
x by the
formula:


x = max{(xa − xl ), (xg − xa)} = max{0.3 , 0.2} = 0.3

• write the output as (xa ± 
x) = (1.4 ± 0.3)

At the end, we could state rigorously16 that x ∈ [1.1, 1.7].

The numerical data produced following steps i-v above are presented in Table 1:17

Therefore we can state that pc ≥ p(9)
c = 0.63328

5. SIMULATIONS

Definition 2.1 can be read as a computer algorithm for simulating the right

edge process p X
(i)
n . According to Lemma 3.1 the right edge mean speed at time n

p X
(i)
n /n converges to M (i)(p) almost surely, as n tends to infinity. Therefore it is

16 This turns out to be always the case, provided that the roundings corresponding to xg are performed
upwards, whereas the roundings corresponding to xl are performed downwards.

17 the calculations were carried out on double precision.

|M (i)(p) − M (i)
Num (p)| ≤ 
M (i)(p) ; where M (i)

Num (p) denotes the asymptotic mean drift of i th order
determined numerically.
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Fig. 5. Independent realizations of the processes .64450 X
(1000)
n /n .64452 X

(1000)
n /n and enlarged detail.

possible to determine p(i)
c observing the height of the plateau that takes shape as

n increases, according with the rule:

• height of plateau < 0 ⇒ p < p(i)
c ,

• height of plateau > 0 ⇒ p > p(i)
c .

Figure 5 ilustrates the use of this simulation technique in the case of i = 1000.
It is worth observing that the plateau pattern of Fig. 5 occurs even for large

values of i , where p(i)
c ≈ pc. Therefore it is possible to generate sharp lower

estimates for pc running the algorithm until the plateau pattern takes shape.
Table 2 summarizes our simulation results.
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